

Nitrat T M260

0,08 - 1 mg/L N

Zinkreduktion / NED

Instrumentspezifische Informationen

Der Test kann auf den folgenden Geräten durchgeführt werden. Zusätzlich sind die benötigte Küvette und der Absorptionsbereich der Photometer angegeben.

Geräte	Küvette	λ	Messbereich
MD 600, MD 610, MD 640,	ø 24 mm	530 nm	0,08 - 1 mg/L N
Test Kit. XD 7000. XD 7500			

Material

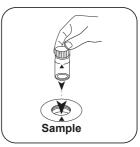
Benötigtes Material (zum Teil optional):

Reagenzien	Form/Menge	Bestell-Nr.
Nitrate Test	Tablette / 100	502810
Nitrite LR	Tablette / 100	512310BT
Nitrite LR	Tablette / 250	512311BT
Nitrate Test Pulver	Pulver / 15 g	465230
NITRATE-Teströhrchen	1 St.	366220

Anwendungsbereich

- Abwasserbehandlung
- · Trinkwasseraufbereitung
- · Rohwasserbehandlung

Durchführung der Bestimmung Nitrat mit Tablette und Pulver

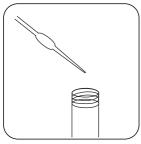

Die Methode im Gerät auswählen.

Für diese Methode muss bei folgenden Geräten nicht jedes mal eine ZERO-Messung durchgeführt werden: XD 7000, XD 7500

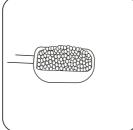
24-mm-Küvette mit 10 mL Küvette(n) verschließen. Probe füllen.

Die Probenküvette in den Messschacht stellen. Positionierung beachten.

Taste ZERO drücken.



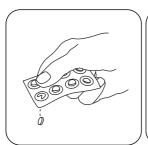
Küvette aus dem Messschacht nehmen.



Küvette entleeren.

Bei Geräten, die keine ZERO-Messung erfordern, hier beginnen.

Ein Nitratest-Röhrchen mit 20 mL Probe füllen.



Einen Mikrolöffel **NITRATE TEST Pulver** zugeben.

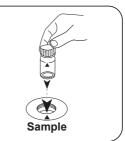
Das Teströhrchen mit dem Deckel verschließen und den Inhalt durch kräftiges Schüteln für 1 Minute mischen.

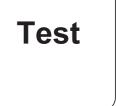
Eine **NITRATE TEST Tablette** zugeben.

Das Teströhrchen mit dem Deckel verschließen und den Inhalt durch kräftiges Schüteln für 1 Minute mischen.

- Das Teströrchen aufrecht hinstellen. Warten, bis sich das Reduktionsmittel abgesetzt hat.
- Anschließend das Teströhrchen drei- bis viermal umschwenken.
- · Das Teströhrchen 2 Minuten stehen lassen.
- Das Teströhrchen öffnen und Rückstände des Reduktionsmittels mit einem sauberen Tuch abwischen.
- 10 mL dieser Probe in eine 24-mm-Küvette dekantieren, ohne Reduktionsmittel zu überführen.

Eine **NITRITE LR Tablette** zugeben.


Tablette(n) unter leichter Drehung zerdrücken.


Küvette(n) verschließen.

Tablette(n) durch Umschwenken lösen.



Die **Probenküvette** in den Messschacht stellen. Positionierung beachten.

Taste **TEST** (XD: **START**) drücken.

10 Minute(n) Reaktionszeit abwarten.

Nach Ablauf der Reaktionszeit erfolgt automatisch die Messung.

In der Anzeige erscheint das Ergebnis in mg/L Nitrat.

Auswertung

Die folgende Tabelle gibt an wie die ausgegebenen Werte in andere Zitierformen umgewandelt werden können.

Einheit	Zitierform	Umrechnungsfaktor
mg/l	N	1
mg/l	NO ₃	4.4268

Chemische Methode

Zinkreduktion / NED

Appendix

Kalibrierfunktion für Photometer von Fremdherstellern

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-9.38065 • 10 ⁻³	-9.38065 • 10 ⁻³
b	3.20151 • 10-1	6.88325 • 10 ⁻¹
С	2.5446 • 10 ⁻³	1.17624 • 10 ⁻²
d		
е		
f		

Störungen

Permanente Störungen

- Antimon(III), Eisen(III), Blei, Quecksilber(I), Silber, Chlorplatinat, Metavanadat, Bismut sorgen für Ausfällungen.
- 2. Bei Anwesenheit von Kupfer(II) werden kleinere Messewerte erhalten, da es den Abbau von Diazoniumsalzen beschleunigt.

Ausschließbare Störungen

- Falls die Original-Wasserprobe Nitrit enthält, werden zu hohe Nitratstickstoffwerte erhalten. Zur Korrektur wird der Gehalt an Nitratstickstoff mittels Methode 270 ermittelt und von dem Ergebnis der Nitratstickstoffbestimmung abgezogen. Der rechnerisch erhaltene Wert gibt den tatsächlichen Gehalt an Nitratstickstoff in der zu untersuchenden Wasserprobe an.
- Bei Nitratstickstoffkonzentrationen über 1 mg/L kommt es nach der Reaktionszeit von 10 Minuten zu einer Fehlmessung (in diesem Fall gibt es einen Farbumschlag nach Aprikotfarben, nicht wie sonst nach Pinkrot). Durch Verdünnung der Wasserprobe kann der Messbereich erweitert werden. Das Analyseergebnis muss dann mit dem Verdünnungsfaktor multipliziert werden.

Abgeleitet von

ASTM D 3867-09 APHA 4500 NO3- E-2000 US EPA 353.3 (1983)