

Phosphat ges. HR TT

M318

1,5 - 20 mg/L Pb)

Phosphormolybdänblau

Instrumentspezifische Informationen

Der Test kann auf den folgenden Geräten durchgeführt werden. Zusätzlich sind die benötigte Küvette und der Absorptionsbereich der Photometer angegeben.

Geräte	Küvette	λ	Messbereich
SpectroDirect, XD 7000, XD 7500	ø 16 mm	690 nm	1,5 - 20 mg/L P ^{b)}

Material

Benötigtes Material (zum Teil optional):

Reagenzien	Form/Menge	Bestell-Nr.
Phosphat-gesamt HR	24 St.	2420700

Es wird außerdem folgendes Zubehör benötigt.

Zubehör	Verpackungseinheit	Bestell-Nr.
Thermoreaktor RD 125	1 St.	2418940

Anwendungsbereich

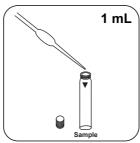
- · Abwasserbehandlung
- · Trinkwasseraufbereitung
- · Rohwasserbehandlung

Vorbereitung

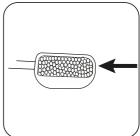
- Stark gepufferte Proben oder Proben mit extremen pH-Werten sollten vor der Analyse in einen pH-Bereich zwischen 6 und 7 gebracht werden (mit 1 mol/l Salzsäure bzw. 1 mol/l Natronlauge).
- 2. Die entstehende blaue Farbe wird durch Reaktion des Reagenzes mit ortho-Phosphat-Ionen erzeugt. Phosphate, die in organischer und in kondensierter, anorganischer (Meta-, Pyro- und Polyphosphate) Form vorliegen, müssen daher vor der Analyse in ortho-Phosphat-Ionen umgewandelt werden. Die Vorbehandlung der Probe mit Säure und Hitze schafft die Bedingungen für die Hydrolyse der kondensierten, anorganischen Formen. Organisch gebundene Phosphate werden durch Erhitzen mit Säure und Persulfat in ortho-Phosphat-Ionen umgewandelt. Die Menge an organisch gebundenem Phosphat kann berechnet werden: mg/L organische Phosphate = mg/L Phosphat, gesamt mg/L Phosphat, säurehydrolysierbar.

Anmerkungen

 Wird die Bestimmung ohne Aufschluss durchgeführt, so werden nur ortho-Phosphate erfasst.


Durchführung der Bestimmung Phosphat, gesamt HR mit Küvettentest

Die Methode im Gerät auswählen.


Für diese Methode muss bei folgenden Geräten nicht jedes mal eine ZERO-Messung durchgeführt werden: XD 7000, XD 7500

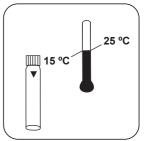
Eine Reagenzküvette öffnen.

1 mL Probe in die Probenküvette geben.

Einen gestrichenen Messlöffel Nr. 4 (weiß) Phosphate-103 zugeben.

Küvette(n) verschließen.

Inhalt durch Umschwenken mischen.


Küvette(n) in vorgeheiztem Thermoreaktor für 30 Minuten bei 100 °C aufschließen.

Küvette aus dem Thermoreaktor nehmen. (Achtung: mischen. Küvette ist heiß!)

Inhalt durch Umschwenken mischen.

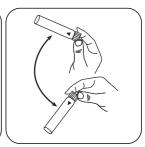
Küvette(n) auf Raumtemperatur abkühlen lassen.

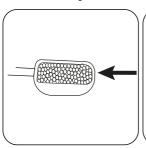
Die mitgelieferte Nullküvette (roter Aufkleber) in den Messschacht stellen. Positionierung beachten.

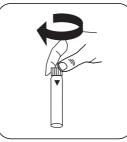
Zero

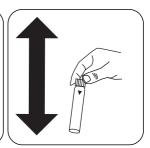
Taste **ZERO** drücken.

Die Küvette aus dem Messschacht nehmen.

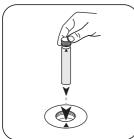

Bei Geräten, die keine ZERO-Messung erfordern, hier beginnen.


0.1 mL (2 Tropfen) Phosphate-101 der aufgeschlossenen Probe zugeben.


Küvette(n) verschließen.

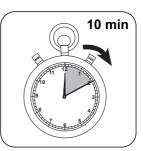


Inhalt durch Umschwenken mischen.


Einen gestrichenen Mess- Küvette(n) verschließen. löffel Nr. 4 (weiß) Phosphate-102 zugeben.



Inhalt durch Schütteln lösen.



tionierung beachten.

Taste **TEST** (XD: **START**) drücken.

10 Minute(n) Reaktionszeit abwarten.

Nach Ablauf der Reaktionszeit erfolgt automatisch die Messung.

In der Anzeige erscheint das Ergebnis in mg/L Gesamtphosphat.

Auswertung

Die folgende Tabelle gibt an wie die ausgegebenen Werte in andere Zitierformen umgewandelt werden können.

Einheit	Zitierform	Umrechnungsfaktor
mg/l	Р	1
mg/l	PO ₄ 3-	3.066177
mg/l	P ₂ O ₅	2.29137

Chemische Methode

Phosphormolybdänblau

Appendix

Kalibrierfunktion für Photometer von Fremdherstellern

Conc. = a + b•Abs + c•Abs² + d•Abs³ + e•Abs⁴ + f•Abs⁵

	ø 16 mm
a	-2.31245 • 10 ⁻¹
b	2.78092 • 10+1
С	4.2385 • 10+0
d	
е	
f	

Störungen

Störung	Stört ab / [mg/L]
Cu ²⁺	5
Ni ²⁺	25
Pb ²⁺	25
Fe ²⁺	250
Fe³+	250
Hg ²⁺	250
Al³+	1000
Cr ³⁺	1000

Störung	Stört ab / [mg/L]
Cd ²⁺	1000
Mn ²⁺	1000
NH ₄ ⁺	1000
Zn²+	1000
Gesamthärte	446,5 (2500 °dH)
NO ₂ ·	5
CrO ₄ ²⁻	30
p-PO ₄	30
S ²⁻	30
SiO ₂	30
CN ⁻	250
HCO ₃ ·	89,5 mmol/l (250 °dH)
EDTA	250
CI ⁻	1000
NO ₃ ·	1000
SO ₄ ²⁻	1000
SO ₃ ²⁻	1000

Gemäß

8

DIN ISO 15923-1 D49 Standard Method 4500-P E US EPA 365.2

^{b)} Reaktor erforderlich für CSB (150 °C), TOC (120 °C) und Gesamt -chrom, - phosphat, -stickstoff, (100 °C)